推荐产品3推荐产品2推荐产品1
新闻内容News

图像算法平台医疗成像算法的当前趋势及其可扩展平台

现场可编程门阵列为可扩展CPU平台提供数据采集和协处理支持,使得更复杂的成像成为可能。

医学成像

  医学成像技术在医疗保健领域发挥的作用越来越重要。这是因为医疗保健行业正在努力检查出—甚至预测出—尚处在早期阶段的疾病并积极推行无创性治疗,并与此同时降低诊断和治疗成本。诊断成像模式的融合与成像算法开发方式及进展相结合是推动开发能实现上述目标的新仪器的主要因素。

  为了提供能满足这些医疗保健行业目标所需要的功能,设备开发商正在转向可扩展的、商业现货供应(COTS)的中央处理单元(CPU)平台,这些平台支持现场可编程门阵列(FPGA)用于数据采集和协处理。要高效地开发灵活、可扩展的医疗影像设备,设备开发商必须考虑若干因素。这些因素包括成像算法的开发,多个成像技术的协同使用(成像模式的融合)以及平台的可扩展性。

  成像算法的开发需要用到高级直观的建模工具,用于数字信号处理算法的持续改进。这些先进的算法要求可扩展的系统平台,可以显着地提高图像处理性能。这些可扩展的平台应该可以让更小型的、更方便携带的设备得以实现。

  要实现近实时分析,系统平台必须和软件(CPU)和硬件(可配置的逻辑门的数量)相匹配。这些处理平台必须满足不同的性能价位,并且必须能够应对多种成像技术间的不同要求。 FPGA可以很容易地被集成到多核CPU平台,为非常灵活的系统提供DSP处理能力,实现最高性能。

  系统架构和设计工程师必须快速区分这些平台上的算法,然后运用高级开发工具和知识产权(IP)库对其进行调试。这一过程加速了平台部署,从而实现了制造商利润的最大化。

  本文探讨了医疗成像算法的当前趋势、成像模式的融合和实现这些算法的可扩展平台。

算法开发

  应从每种成像模式的成像算法中的趋势分析开始探讨,包括考虑如何使用FPGA和IP。

  磁共振成像(MRI)生成人体的横截面图像。利用FPGA实现的三个功能被用来重建来自截面的三维体。首先,快速傅里叶变换(FFT)生成灰度2 D切片,通常为矩阵,来自频域的数据。然后,三维体的重建涉及切片之间的插值,以产生一个片间距来近似像素间的间距,这样就可以从任何2D平面看到图像。接着,进行迭代分辨率锐化。这个功能采用一种基于一个迭代反向滤波过程的空间去模糊技术,从而在降低噪声的同时使图像结构被重新聚焦。因此,截面的整体视觉诊断分辨率被大大提高。

  超声(成像)。超声图像有颗粒存在是一种被称为散斑(speckle)的现象。散斑是由于不同的独立散射物质(类似无线领域的多路无线电频率反射)的相互作用所导致,并且是倍增的性质。超声图像可通过有损压缩的方法来消除斑点。首先,取图像的对数;散斑噪声变成和有效信号相加。然后,通过JPEG2000编码器采用小波有损压缩将噪音最小化。

  X光。状动脉X光成像的运动修正是一种将心脏呼吸循环—呼吸和心脏跳动—对成像的影响降到最小的算法。3D+时间的冠状动脉模型的运动被投射到2D的X光图像,支持对去扭曲功能(平移和放大)---校正这种运动并得到更清晰的图像的计算。

  分子成像。分子成像是对细胞和分子级生物过程的表征和测量,其目的是检测并捕捉病变细胞和分子的图像,并监测之。例如,可以将X光成像,正电子发射断层扫描(PET)和单光子发射计算机计算断层成像(SPECT)组合用于器官功能、细胞和分子的低分辨率图像,在相对应解剖特征的分辨率低至0.5mm的情况下。设备更加小型化的趋势和对新算法的探索推动使得性能超出了多核CPU的性能,并使得这些紧凑的系统必须采用FPGA技术。

  成像模式的融合。实现早期疾病诊断和无创性治疗推动着成像技术的结合,例如,在PET /电脑断层扫描(CT)系统和x光治疗/CT设备中可见到上述情况。要满足当前的性能要求,需要更高分辨率的图像,这要求用于精巧的几何微阵列探测器加上FPGA来对光子和电子信号进行预处理。在预处理完成后,这些信号被CPU和FPGA协处理器组合进行综合和处理,从而生成详细的身体图像。

  非实时(NRT)图像的融合,或图像配准,通常被用在将成像于不同时间的器官功能图像和解剖图像进行排列对比。然而,由于患者位置的变化、扫描基础轮廓的不同、以及患者内部器官自然而然的运动等原因,NRT图像配准是存在问题的。采用FPGA处理对PET和CT实时融合,允许器官功能图像和解剖图像在一次成像期间都被采集并且融合,而不是像过去在后期将图像叠加。融合后的图像可以为手术治疗提供更好的清晰度和定位精度。

  在手术期间用于指导医生的图像处理包括将手术前的CT或MRI图像与实时3D超声或X光图像进行配准,以促进无创治疗(如超声波、磁共振干扰和x光治疗)的应用。在这一领域,各种算法被开发用于为某些特定的成像模式和治疗组合提供优化的图像配准结果。

 0.4272038936615 s